Seventh Semester B.E. Degree Examination, June/July 2017 Operations Research

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Explain in brief different phases of operations research.

(06 Marks)

b. Mention four application areas of operation research.

(04 Marks)

- c. A furniture maker has 6-units of wood and 28 hrs of free time, in which he will make two models of decorative screens. He estimates that model—1 requires 2-units of wood and 7-hrs of working time, while model-2 requires 1-unit of wood and 8-hrs of working time. The prices of the models are Rs.120/- and Rs. 80/- per screen respectively. Formulate this problem as L.P.P and solve it by graphical method. (10 Marks)
- 2 a. Define:
 - i) Basic feasible solution
 - ii) Optimal solution
 - iii) Un bounded solution.

(06 Marks)

b. Use the Simplex method to solve following L.P.P

 $Maximize Z = 4x_1 + 10x_2$

Subject to
$$2x_1 + x_2 \le 50$$

$$2x_1 + 5x_2 \le 100$$

$$2x_1 + 3x_2 \le 90$$

$$x_1, x_2 \ge 0$$

(14 Marks)

3 a. Solve the following transportation problem (minimization)

	D_1	D_2	D_3	D_4	Supply
S_1	21	16	25	13	11
S_2	17	18	14	23	13
S_3	32	27	18	41	19
Demand	6	10	12	15	

- i) Find IBFS by VAM method
- ii) Check for optimality by MODI method.

(14 Marks)

b. Find the optimal assignment cost for following assignment problem.

		Operators				
		I	П	Ш	IV	
Machine	Α	10	5	13	15	
	В	3	9	18	3	1
	C	10	7	3	2	
	D	5	11	9	7	

(06 Marks)

1 of 3

Find the optimum integer solution to following I.P.P 4

Maximize
$$Z = x_1 + 2x_2$$

Subjected to
$$x_1 + x_2 \le 7$$

$$2x_1 \leq 11$$

$$2x_2 \le 7$$

 $x_1, x_2 \ge 0$ and are integers.

(20 Marks)

PART - B

5 a. A project consist of activities as given in the table :

Activities	Predecessor	Estimated time in weeks			
		t_0	t _p	te	
Λ	_	1	7	1	
В	A	1	7	4	
C		2	8	2	
D	B. C	1	1	1	
Е	C	2	14	5	
F	A, C	2	8	5	
G	D	3	15	6	

- i) Draw the project network
- ii) Identify the critical path and determine the expected completion time of project
- b. B. What is the probability that project would be completed in 17 weeks? (16 Marks) Draw the graph of direct cost, indirect cost and total cost of a project. Show the optimum duration and least cost of project on graph. (04 Marks)
- a. Briefly explain the important characteristics of queuing system.
 - b. A box office ticket window manned by single server, customers arrive to purchase tickets according to Poisson's distribution with a mean rate of 30/hr. The time required to serve a customer has an exponential distribution with a mean of 90 sec. Determine:
 - i) Mean queue length
 - ii) Mena waiting time in the queue
 - iii) Probability that there are 3 or more customers in the system
 - iv) Percentage of time the server is busy.

(12 Marks)

(08 Marks)

7 a. Explain:

i) pure strategy

(04 Marks)

ii) mixed strategy.

b. Find the optimal strategies and value of game by using dominance rule for following game.

$$\begin{bmatrix} -4 & 6 & 3 \\ -3 & -3 & 4 \\ 2 & -3 & 4 \end{bmatrix}.$$

(08 Marks)

c. Solve the following game graphically

Find the strategies for player A and B and also value of game.

(08 Marks)

8 a. Explain the following:

- i) idle time on machine
- ii) total elapsed time

(04 Marks)

b. Mention any six assumptions made for sequencing problems.

(06 Marks)

c. There are 5-jobs each of which must go through the two machines A and B in order A, B processing times are given below:

Jobs	1	2	3	4	5
Time on (hrs) machine A	5	1	9	3	10
Time on (hrs) machine B	2	6	7	8	4

Determine the sequence for 5-jobs that will minimize the total elapsed time. Also calculate minimum elapsed time and idle times for both the machines. (10 Marks)

* * * * *